2(n^2-5)=123

Simple and best practice solution for 2(n^2-5)=123 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(n^2-5)=123 equation:



2(n^2-5)=123
We move all terms to the left:
2(n^2-5)-(123)=0
We multiply parentheses
2n^2-10-123=0
We add all the numbers together, and all the variables
2n^2-133=0
a = 2; b = 0; c = -133;
Δ = b2-4ac
Δ = 02-4·2·(-133)
Δ = 1064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1064}=\sqrt{4*266}=\sqrt{4}*\sqrt{266}=2\sqrt{266}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{266}}{2*2}=\frac{0-2\sqrt{266}}{4} =-\frac{2\sqrt{266}}{4} =-\frac{\sqrt{266}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{266}}{2*2}=\frac{0+2\sqrt{266}}{4} =\frac{2\sqrt{266}}{4} =\frac{\sqrt{266}}{2} $

See similar equations:

| 4−3x=19 | | 4n+–4n+–2n−–5n−–3=–15 | | 0.20x+70=1 | | -9+2m=17 | | -3m+3=-36 | | |x-17|=39 | | 10-7k=31 | | 0.20x+70=0 | | y+52/–9=4 | | -6j-17=-77 | | 11y-6+16y-10=90 | | 6h+32=176 | | 11÷19=n | | 9+8(5f=4) | | -15h+16=79 | | –6w+(–8=)+1+(–7w) | | 6(m-10)=2(4m-5) | | -22=-2(3x-7) | | j+–2.1=–9.1 | | 2x+8/5x-4=82 | | 2x•8=2(x+4) | | 1/2=2,1;4=x | | |4x-5|=|8x+3| | | 8g+9=-15 | | 14=23+3x | | 1x/5-3=5 | | 2x+8/5x-4=28/54 | | -4-m=-3+3m | | (5f)-9=(-19) | | 7k+-8k-1=-12 | | 1/5*b=5 | | 4/2x+4=3/x+7 |

Equations solver categories